The mouse haemochorial placenta is a complex mixture of maternal cells and foetal trophectoderm and inner cell mass (ICM)-derived cells. The majority of the placental tissue is assumed to be trophoblast in origin but the exact extent and localization of the ICM and maternal contribution has not previously been determined. Using embryo transfer and reconstituted blastocyst techniques, combined with isozymal and in situ genetic markers, we have established that about 70% of the 13 to 15-day placenta is trophectoderm-derived, 30% is maternal in origin, and 4% develops from the ICM. Nearly all of the maternal contribution was confined to the spongiotrophoblast region and all of the ICM contribution was confined to the labyrinthine trophoblast region, where it formed the foetal blood capillaries and the endodermal sinuses. Using the same genetic markers, we showed that cell suspension techniques commonly used to produce 'trophoblast' cell preparations from placenta do not enrich for trophoblast, and, indeed, that collagenase, the preferred dissociation technique for cell viability, produced cell suspensions in which ICM and maternal cells were preferentially dissociated. No method for producing pure trophoblast populations has yet been found. Some unusually high ICM contributions to the placenta were found in reconstituted blastocyst experiments using ICMs isolated from early 3.5-day blastocysts, suggesting that these ICMs may have contributed to the trophectoderm layer of the blastocyst. These and other experiments suggest that the inner cell mass lineage may not be closed until some time after formation of the blastocyst.
Read full abstract