The induction of single-strand breaks (SSBs) in the DNA of Chinese hamster ovary cells by X rays under different irradiation conditions was measured by the alkaline elution technique. The oxygen enhancement ratio (OER) for SSB induction determined for cells irradiated in air versus irradiation of cells made hypoxic by metabolic depletion of O2 was 9.7. However, when proteinase K was included in the cell lysis solution the OER was reduced to 4.2. The proteinase affected the elution rate only of the cells irradiated under hypoxic conditions, suggesting that DNA-protein crosslinks (DPCs) are preferentially produced in hypoxic cells by radiation. The ability to repair these DPCs was compared in two cell lines: the wild-type AA8 line and an excision-repair-deficient mutant line, UV-41. The AA8 line removed about 80% of the DPCs induced by radiation under hypoxic conditions within a 24-h repair incubation. The UV-41 line, on the other hand, removed only about 20% of the DPCs in the same time. The OERs for cell survival of these two lines are 3.1 for AA8 but only 1.9 for UV-41, suggesting that the DPCs preferentially induced in the DNA of cells irradiated under hypoxic conditions may contribute to cell killing when the normal DNA-repair mechanisms are compromised.