Ethnopharmacological relevancePhysalin B (PB) is an active constituent of Physalis alkekengi L. var. Franchetii, which is a traditional medicine for clearing heat and detoxification, resolving phlegm, and diuresis. It has been commonly applied to treat sore throat, phlegm-heat, cough, dysuria, pemphigus, and eczema. Aim of studyPhysalin B has shown efficacy as an anti-acute lung injury (ALI) agent previously; however, its mechanisms of action remain unclear. In the present study, we established a lipopolysaccharide-induced septic ALI model using BALB/c mice to further confirm the therapeutic potential of PB and to assess the underlying molecular mechanisms. Materials and methodsWe used 75% ethanol and macroporous resin for extraction, separation, and enrichment of PB. The LPS-induced ALI mouse model was used to determine anti-inflammatory effects of PB. The severity of acute lung injury was evaluated by hematoxylin and eosin staining, wet/dry lung ratio, and myeloperoxidase (MPO) activity in lung tissue. An automatic analyzer was used to measure the arterial blood gas index. Protein levels of pro-inflammatory cytokines in serum, bronchoalveolar lavage fluid (BALF), and lung tissue was measured using an ELISA. Quantitative RT-PCR was used to measure changes in RNA levels of pro-inflammatory cytokines in the lungs. A fluorometric assay kit was used for determination of apoptosis-related factors to assess anti-apoptotic effects of PB. Western blotting was used to assess levels of key pathway proteins and apoptosis-related proteins. Connections between the pathways were tested through inhibitor experiments. ResultsPretreatment with PB (15 mg kg-1 d-1, i.g.) significantly reduced lung wet/dry weight ratios and MPO activity in blood and BALF of ALI mice, and it alleviated LPS-induced inflammatory cell infiltration in lung tissue. The levels of pro-inflammatory factors TNF-α, IL-6, and IL-1β and their mRNA levels in blood, BALF, and lung tissue were reduced following PB pretreatment. PB pretreatment also downregulated the apoptotic factors caspase-3, caspase-9, and apoptotic protein Bax, and it upregulated apoptotic protein Bcl-2. The NF-κB and NLRP3 pathways were inhibited through activation of the PI3K/Akt pathway due to PB pretreatment, whereas administration of PI3K inhibitors increased activation of these pathways. ConclusionsTaken together, our results suggest that the anti-ALI properties of PB are closely associated with the inactivation of NF-κB and NLRP3 by altering the PI3K/Akt pathway. Furthermore, our findings provide a novel strategy for application of PB as a potential agent for treating patients with ALI. To the best of our knowledge, this is the first study to elucidate the underlying mechanism of action of PB against ALI.
Read full abstract