A facile one-step hydrothermal method was developed to prepare reduced graphene oxide-laminated TiO2–bronze (TiO2-B) nanowire composites (TNWG), which contain two-dimensional graphene oxide nanosheets and TiO2-B nanowires. In the hydrothermal process, the functional groups of graphene oxide were reduced significantly. Dye-sensitized solar cells (DSSCs) were fabricated using TNWG as the photoanode material. The effects of different reduced graphene oxide contents in TNWG on the energy conversion efficiency of the dye-sensitized solar cells were investigated using J–V and incident photon-to-current conversion efficiency characteristics. DSSCs based on a TNWG hybrid photoanode with a reduced graphene oxide content of 8 wt % demonstrated an overall light-to-electricity conversion efficiency of 4.95%, accompanied by a short-circuit current density of 10.41 mA cm–2, an open-circuit voltage of 0.71 V, and a fill factor of 67%, which were much higher than those of DSSC made with a pure TiO2-B NW-based photoanode. The overall improvement in photovoltaic performance could be associated to the intense visible light absorption and enhanced dye adsorption because of the increased surface area of the composite, together with faster electron transport due to reduced carrier recombination.
Read full abstract