Breast cancer is a major cause of cancer related deaths in women worldwide. Available treatments pose serious limitations such as systemic toxicity, metastasis, tumor recurrence, off-target effects, and drug resistance. In recent years, phytochemicals such as secondary metabolites due to their effective anticancer potential at very low concentration have gained attention. Aim of the study was to evaluate anticancer potential of Citrullus colocynthis and its possible molecular targets on MCF-7, a human breast cancer cell line. Methanolic extract of leaves was prepared and fractionated by solvents (n-hexane, chloroform, ethyl acetate and n-butanol) with increasing polarity. Bioassays and gene expression regulation was conducted to evaluate the anticancer activity, proliferation rate and cell cycle regulation of breast cancer cells treated with extract and its fractions, separately. Results showed a significant anticancer activity of methanolic extract of C. colocynthis and two of its fractions prepared with chloroform and ethyl acetate. Bioassays depicted significant decrease in proliferation and growth potential along with cell cycle arrest of treated cells compared to control untreated cells. Expression regulation of genes further confirmed the cell cycle arrest through significant upregulation of cyclin-CDK inhibitors (p21 and p27) and cell cycle checkpoint regulators (HUS1, RAD1, ATM) followed by downregulation of downstream cell cycle progression genes (Cyclin A, Cyclin E, CDK2). It is concluded that C. colocynthis arrests cell cycle in human breast cancer cells through expression regulation of cyclin-CDK inhibitors and with further research can be proposed for therapeutic interventions.