Improving the quality of dynamic cell culture in laboratories is an important field in bioengineering. In this study, a novel lab-scale bioreactor using a vibrating agitator and a modified flask has been introduced to create a strong mixing at low shear stress. This bioreactor has been optimized using Box-Behnken design based on three dimensionless important structural factors including disc diameter, vibration amplitude, and the height of the disc placement. Three growth indicators including the specific growth rate, the natural logarithm of the maximum cell density, and productivity have been considered as biological responses. The results show that the disc diameter has the most important role in these indicators. If the disc diameter, vibration amplitude, and the height of disc placement are set to 0.24, 0.02, and 0.4 of the flask diameter, respectively, the values of the specific growth rate, the maximum cell density, and productivity at this optimum settings are 0.033 (h−1), 13.11, and 5133 (cells/(mL.h)), respectively. These values of the indicators are high and indicate the better performance of this bioreactor than other lab-scale bioreactors. In addition, investigating Reynolds number in the fluid flow indicates that in the range of 780 up to 1150, growth indices are high.
Read full abstract