For the activation of T cells, it is necessary the specific recognition of the peptide by the T cell receptors (TCR) in the surface of antigen-presenting cells (APCs) and additional signals delivered by costimulatory receptors. In fish, knowledge about the presence of these costimulatory signals is limited and functional evidence almost absent. Thus, in this study, we have identified the stimulatory CD28 and the inhibitory cytotoxic T-lymphocyte-associated protein 4 (CTLA4) coreceptors in the European sea bass (Dicentrarchus labrax), and evaluated their transcription. In parallel, the transcription encoding for the T cell markers CD8α and CD4 was also evaluated. Both coreceptors showed the canonical architecture including a signal peptide, an immunoglobulin domain, a transmembrane region and a cytosolic tail. Protein predictions and phylogenetic tree identify them as true mammalian orthologues of CD28 and CTLA4. We found these genes constitutively expressed in all studied organs of European sea bass with high expression in lymphoid organs (thymus, spleen and head-kidney) and liver. The molecular expression pattern of these genes was up-regulated in head-kidney leucocytes stimulated with T mitogens as concanavalin A and phytohemagglutinin (PHA), but not with the B cell mitogen lipopolysaccharide (LPS). Fish challenged with nodavirus (NNV) evidenced a differential and opposing regulation of the cd28 and ctla4 transcription levels in the brain, the target organ for viral replication, and head-kidney. While cd28 transcription tends to decrease over the infection time in both organs the expression of the ctla4 gene tends to increase. Interestingly, the coreceptor expression is highly and significantly correlated to the transcription of the T cell markers. Our results highlight the important role of CD28 and CTLA4 as costimulatory receptors of T cells in European sea bass but further studies are deserved.