Spinal cord injury (SCI) is one of the serious central nervous system injuries and the incidence of SCI continues to increase. Previous studies have indicated that electroacupuncture (EA) is beneficial for promoting recovery after SCI. In the present study, we attempted to evaluate how EA can promote the neural repair in SCI model rats by observing changes in the Notch signaling pathway. Experimental rats were randomly divided into four groups. Each group had its own intervention period: 1 day, 7 days, 14 days, and 28 days, and five randomized subgroups: blank control (B) group, blank electroacupuncture (BE) group, sham operation (S) group, model control (M) group and EA group. Animals in the EA group and the BE group were treated with EA at Dazhui (GV14) and Mingmen (GV4) acupoints for 20 min. After the intervention period, the Basso-Beattie-Bresnahan (BBB) score was used to evaluate the neurological function. We found that BBB score increased in EA-treated groups. Hematoxylin and eosin staining was used to observe pathological changes in the injured spinal cord and the results showed that EA therapy could promote the repair of injured spinal cord tissue. Immunohistochemistry and Western blot methods were used to detect the expression of proteins Delta1, Presenilin1, Hes1, and Hes5 in the injured spinal cord. The results showed that the expression levels of Delta1, Presenilin1, Hes1, and Hes5 increased significantly after SCI and decreased after EA treatment. Our study suggested that the possible mechanism by which EA could benefit the recovery after SCI in rats may include inhibiting the Notch signaling pathway and regulating the downstream proteins expression. In addition, our study can provide reference for selecting acupoints and treatment cycle in the treatment of SCI.