We examined the posthatch chick retina for the frequency of occurrence of localization and colocalization of four amino acid transmitter candidates: glutamate (Glu), aspartate (Asp), gamma aminobutyric acid (GABA), and glycine (Gly) using postembedding methods. We support previous studies of Glu, Asp, GABA, and Gly localization in the direct and indirect functional pathways of the chick retina and extend these studies with new qualitative and quantitative observations. We found that photoreceptors show distinct cellular immunoreactivity for both Glu (Glu+) and Asp+, but not for Gly (Gly-) or GABA. Moreover, there is compartmentalization of Glu and Asp staining within the photoreceptors. All horizontal cells react strongly with Asp and Glu, about three-fourths are GABA+ and three-fourths of these are Gly+. Bipolar cells are uniformly Glu+, heterogeneously Asp+, occasionally Gly+, but GABA-. A majority of amacrine cells stain heterogeneously with all antibodies: 90% are Gly+, slightly more than half colocalize Glu, GABA, and Gly. Furthermore, amacrine cells in the outer two or three rows of cells are more likely to be stained by Gly than Glu, Asp, or GABA. Confirming previous studies, ganglion cells were mostly immunoreactive for Glu and Asp with fewer reactive for GABA and Gly. Strong and distinctly cellular immunoreactivity was found in both central and peripheral retina. Our findings show: 1) there is extensive colocalization of Glu, Asp, GABA, and Gly among most retinal neurons, including some cells that contain all four; 2) cells of the direct functional pathway tend to be labeled by Glu and Asp generally to the exclusion of GABA and Gly, while those of the indirect pathway tend to be labeled by GABA+ and/or Gly+ in addition to Glu+ and Asp+; 3) different cell body layers have distinct patterns of colocalization; and 4) there is no qualitative difference in staining patterns between peripheral and central retina.
Read full abstract