A novel quinazoli-4-one based ionic liquid, 1-(3-aminopropyl)-3-methyl-4-oxo-3,4-dihydroquinazolin-1-ium bromide (QIL) for fluorometric determination of dissolved ammonia has been successfully synthesized and characterized by spectroscopic techniques such as 1H and 13C NMR, FTIR and HRMS spectrometry. In the proposed method, QIL is converted to a fluorescent derivative by the reaction with ammonia in aqueous medium. The excitation and emission wavelengths were 250 and 436 nm, respectively. Remarkably with the reaction time of >1 s, the binding constant and detection limit was found to be 6.43 × 108 M−1 and 0.73 × 10−8 M, respectively. QIL is found to be highly selective as no interference is observed from various cations, anions, organic molecules and amino acids. The sensing mechanism was further validated by the density functional theory studies. The fluorophore exhibited great sensing property in 3.0–14.0 pH range, hence, it can be employed in diverse matrices. In addition, the fluoro-sensor is highly reversible and reusable in the presence of ctDNA molecule. Moreover, a live-cell imaging study of QIL in Drosophila larval gut tissue has also been carried out to investigate the cell permeability of QIL and its efficiency for selective detection of NH3 in cellular micro environment. To show practical applicability of the fluoro-sensor, test strip kit has been constructed. A detailed comparison table has been shown to evaluate the efficiency of this method.
Read full abstract