Celastrol (CLT) has shown anti-rheumatic activity against rheumatoid arthritis, while its poor water solubility and high organ toxicity restrict its further therapeutic applications. To mitigate these challenges, a reactive oxygen species (ROS)-responsive nanoparticle was developed for celastrol delivery based on the excessive ROS at the pathologic sites, which was synthesized by conjugating bilirubin to a polyethylene glycol (PEG) chain. The PEGylated bilirubin self-assembled into nanoparticle (BRNP) in aqueous solution had a hydrodynamic diameter of around 68.6nm, and celastrol was loaded into BRNP (CLT/BRNP) with a drug encapsulation efficiency of 72.6% and a loading capacity of 6.6%. In vitro study revealed that CLT/BRNP exhibited the capacity of scavenging intracellular ROS and down-regulating the level of nitric oxide after it was effectively internalized by activated macrophages. Furthermore, in adjuvant-induced arthritis rats, BRNP was accumulated preferentially at inflamed joints, alleviating the joint swelling and bone erosion, which significantly decreased the secretion of pro-inflammatory cytokines to suppress the RA progression. Importantly, CLT/BRNP markedly enhanced its anti-arthritic effect and attenuated the toxic effect compared with free celastrol. Taken together, our results suggested that CLT/BRNP could be used for targeted drug delivery in rheumatoid arthritis.
Read full abstract