The outbreak of new viral strains promotes advances in universal diagnostic techniques for detecting infectious diseases with unknown viral sequence. Long double-stranded RNA (dsRNA), a hallmark of infections, serves as a virus marker for prompt detection of viruses with unknown genomes. Here, we report on-chip paper electrophoresis for ultrafast screening of infectious diseases. Negatively charged RNAs pass through the micro and nanoscale pores of cellulose in order of size under an external electric field applied to the paper microfluidic channel. Quantitative separation of long dsRNA mimicking poly I:C was analyzed from 1.67 to 33 ng·μL−1, which is close to the viral dsRNA concentration in infected cells. This paper-based capillary electrophoresis chip (paper CE chip) can provide a new diagnostic platform for ultrafast viral disease detection at the point-of-care (POC) level.