Semiconductor nanosheets have several unique applications in electronic and optoelectronic nanodevices. We have successfully synthesized single-crystalline n-type CdS nanosheets via a chemical vapor deposition (CVD) method in a Cd-enriched ambient. The as-synthesized nanosheets are typically 40–100 nm thick, 10–300 µm wide, and up to several millimeters long. Using the nanosheets, we fabricated for the first time (to our knowledge), nano thin-film transistors (nano-TFTs) based on individual CdS nanosheets. A typical unit of such nanosheet TFTs has a high on–off ratio (∼1.7 ×109) and peak transconductance (∼14.1 µS), which to our knowledge are the best values reported so far for semiconductor nano-TFTs. In addition, we fabricated n-CdS nanosheet/p+-Si heterojunction light emitting diodes (LEDs) with a top electrode structure. This structure, where the n-type electrode is directly above the junction, has the advantage of a large active region and injection current favorable for high-efficiency electroluminescence (EL) and lasing. Room-temperature spectra of the LEDs consist of only an intense CdS band-edge emission peak (∼507.7 nm) with a full width at half-maximum of about 14 nm.