Tuning the photoluminescence (PL) and magnetic properties of 1D semiconductor nanostructures is extremely important in processing light, improving the speed and storage capacity for optoelectronic and spintronic applications. Here, we have reported the 1D Cd1−xMnxS (x = 0–0.102) nanobelts (NBs) and investigated their optical and magnetic properties. These NBs were synthesized by chemical vapor deposition method. The successful incorporation of Mn ions into an individual CdS NB has been confirmed through several characterization tools: SEM-EDX analysis, significant higher angle and phonon mode shifts were observed in the XRD and Raman spectra. Room-temperature PL showed two emission peaks at the near band edge. The first peak is related to exciton magnetic polaron (EMP) and the second one appeared on the low-energy side of the band edge emission and showed very large red-shift (∼33 nm) compared to EMP, which is attributed to bound magnetic polaron (BMP). BMP emission was detected for the first time in CdS low-dimensional nanostructures. Our study showed that Mn ions tuned CdS emission more than 400 nm (from 512 to 929 nm) covering the whole visible spectral region up to the near infrared region for the first time, and significantly boosted the room-temperature ferromagnetism, which shows promise for optoelectronic and spintronic applications.
Read full abstract