Transduction of the granulocyte-macrophage colony stimulating factor (GM-CSF) gene into mouse tumor cells abrogates their tumorigenicity in vivo. Our previous report demonstrated that gene transduction of GM-CSF with either TARC or RANTES chemokines suppressed in vivo tumor formation. In this paper, we examined whether the addition of either recombinant TARC or RANTES proteins to irradiated GM-CSF-transduced tumor vaccine cells enhanced antitumor immunity against established mouse tumor models to examine its future clinical application. Three million irradiated WEHI3B cells retrovirally transduced with murine GM-CSF cDNA in combination with either recombinant TARC or RANTES were subcutaneously inoculated into syngeneic WEHI3B-preestablished BALB/c mice. Vaccinations were well tolerated. Mice treated with GM-CSF-transduced cells and the chemokines demonstrated significantly longer survival than mice treated with GM-CSF-transduced cells alone. Splenocytes harvested from mice treated with the former vaccines produced higher levels of IL-4, IL-6, IFN-gamma, and TNF-alpha, suggesting enhanced innate and adaptive immunity. Immunohistochemical analysis of tumor sections after vaccination revealed a more significant contribution of CD4+ and CD8+ T cells to tumor repression in the combined vaccine groups than controls. TARC and RANTES enhance the immunological antitumor effect induced by GM-CSF in mouse WEHI3B tumor models and may be clinically useful.
Read full abstract