Abstract

We have developed an ex vivo gene therapy paradigm for the treatment of brain tumors using granulocyte-macrophage colony-stimulating factor (GM-CSF). Murine B16 melanoma cells were infected with MFG recombinant retrovirus containing the mouse GM-CSF cDNA. Subcutaneous vaccination of syngeneic mice with irradiated GM-CSF-secreting B16 melanoma cells was capable of completely protecting animals against subsequent intracranial B16 tumor inoculation, with up to 5 x 10(3) cells. Histologic evaluation revealed the presence of neutrophils, eosinophils, and lymphocytes, including CD4+, CD8+, and CD45R+ cells, in the intracerebral inoculation site, peaking 4 days after intracranial inoculation. In contrast, nonvaccinated animals or animals vaccinated with irradiated, nontransduced B16 cells succumbed to intracranial tumor within 3 weeks after inoculation. Treatment of established intracranial B16 melanoma tumors with subcutaneous injection of irradiated GM-CSF-secreting B16 cells significantly delayed death, as compared to injection of irradiated nontransduced B16 cells or no treatment. In addition, treatment of established intracerebral GL261 gliomas by vaccination with irradiated GM-CSF-secreting B16 cells mixed with irradiated, transduced, or nontransduced GL261 cells also extended survival. These B16/GL261 co-vaccinations also improved outcome and, in some cases, induced immunological memory that protected survivors from subsequent intracranial challenge with GL261 tumor cells. These findings indicate that peripheral vaccination with irradiated tumor cells in the presence of GM-CSF-producing cells can initiate a potent antitumor immune response against intracranial neoplasms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.