The erythrocytes of the marine polychaete Glycera dibranchiata contain a number of different, single-chain hemoglobins, some of which self-associate into a ‘polymeric’ fraction. An oligodeoxynucleotide probe was synthesized based on partial amino acid sequences determined by chemical methods, and used to screen a cDNA library constructed from the poly(A + )mRNA of Glycera erythrocytes (Simons, P.C. and Satterlee, J.D. (1989) Biochemistry 28, 8525–8530). The longest positive inserts found were sequenced using the dideoxy nucleotide chain termination method. One complete clone was obtained: clone 5A, 816 bases long, contained 59 bases of 5′-untranslated RNA, an open reading frame of 441 bases coding for 147 amino acids and a 3′-untranslated region of 316 bases. The derived amino acid sequence of Glycera globin P1 was in agreement with the partial amino acid sequences obtained by chemical methods. Three additional inserts obtained in the screening were also sequenced: the inferred amino acid sequences proved to be partial globin sequences which were different from each other and from the sequence of P1. Thus, the ‘polymeric’ fraction of the intracellular hemoglobin of Glycera probably consists of at least four different globin chains much like the ‘monomeric’ fraction. Comparison of the ‘polymeric’ sequence with the two known ‘monomeric’ sequences, M-II and M-IV, shows that they share 54 identical residues. At 74 positions, the identical residues in M-II and M-IV differ from the corresponding residue in P1, including at E-7, where P1 has a distal His, in contrast to Leu in M-II and M-IV. The alignment of Bashford et al. ((1987) J. Mol. Biol. 196, 199–216) and their templates were used to examine the principal differences between the two types of Glycera globin sequences. They appear to consist of uncommon surface amino acid residues at positions C6 (Phe vs. Ala), E10 (Val vs. Lys), E17 (Lys vs. Val), G1 (Arg vs. Lys), G10 (Met vs. Ala) and H5 (Arg vs. Lys). One or more of these residues could be responsible for the self-association exhibited by the ‘polymeric’ Glycera globins.
Read full abstract