Although it is clear that bile acid accumulation is the major initiator of fibrosis caused by cholestatic liver disease, endotoxemia is a common side effect. However, the depletion of hepatic macrophages with gadolinium chloride blunts hepatic fibrosis. Because endotoxin is a key activator of hepatic macrophages, this study was designed to test the hypothesis that LPS signaling through CD14 contributes to hepatic fibrosis caused by experimental cholestasis. Wild-type mice and CD14 knockout mice (CD14(-/-)) underwent sham operation or bile duct ligation and were killed 3 wk later. Measures of liver injury, such as focal necrosis, biliary cell proliferation, and inflammatory cell influx, were not significantly different among the strains 3 wk after bile duct ligation. Markers of liver fibrosis such as Sirius red staining, liver hydroxyproline, and alpha-smooth muscle actin expression were blunted in CD14(-/-) mice compared with wild-type mice after bile duct ligation. Despite no difference in lymphocyte infiltration, the macrophage/monocyte activation marker OX42 (CD11b) and the oxidative stress/lipid peroxidation marker 4-hydroxynonenal were significantly upregulated in wild-type mice after bile duct ligation but not in CD14(-/-) mice. Increased profibrogenic cytokine mRNA expression in the liver after bile duct ligation was significantly blunted in CD14(-/-) mice compared with the wild type. The hypothesis that LPS was involved in experimental cholestatic liver fibrosis was tested using mice deficient in LPS-binding protein (LBP(-/-)). LBP(-/-) mice had less liver injury and fibrosis (Siruis red staining and hydroxyproline content) compared with wild-type mice after bile duct ligation. In conclusion, these data demonstrate that endotoxin in a CD14-dependent manner exacerbates hepatic fibrogenesis and macrophage activation to produce oxidants and cytokines after bile duct ligation.