Multiple mechanisms exist by which tumour cells can escape CD95-mediated apoptosis. Previous studies by our laboratory have shown that primary B cells from non-Hodgkin's Lymphoma (B-NHL) were resistant to CD95-induced cell death. In the current study, we have analysed the mechanisms underlying CD95 resistance in primary human lymphoma B cells. We report that FADD (FAS-associated death domain protein) and caspase-8 were constitutively expressed in lymphoma B cells and that the CD95 pathway was blocked upstream to caspase-8 activation. However, caspase-8 was processed and functional after treatment with staurosporine (STS). We found that the expression levels of FLICE (FADD-like interleukin-1 beta-converting enzyme)-Inhibitory Protein (c-FLIP) and Bcl-2-related proteins were heterogeneous in B-NHL cells and were not related to CD95 resistance. Finally, we report the absence of a CD95-induced signalling complex [death-inducing signalling complex (DISC)] in lymphoma B cells, with no FADD and caspase-8 recruitment to CD95 receptor. In contrast, DISC formation was observed in CD95-resistant non-tumoural (NT) B cells. Therefore, we propose that the absence of DISC formation in primary lymphoma B cells may contribute to protect these cells from CD95-induced apoptosis.
Read full abstract