The use of CD2 rocking modes in the IR spectrum as quantitative probes of phospholipid conformational disorder has recently been described for aqueous dispersions of 1,2-dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol mixtures [Mendelsohn et al. (1989) Biochemistry 28, 8934-8939; Davies et al. (1990) Biochemistry 29, 4368-4373]. Initial studies focused at the 4, 6, and 10 acyl chain positions of DPPC. In the current work, the method is extended to the 2, 3, 12, and 13 positions. Conformational disorder in the L alpha phase is approximately the same (about 20% gauche) at positions 4, 10, and 13, but an unexpected higher value is observed (about 30%) at the 6 position. Cholesterol (33 mol%) restricts gauche rotamer formation by factors ranging from 6 to 9 at positions 4 and 6, respectively, to 1.5-2 at positions 10, 12, and 13. Quantitative analysis for the DPPC/cholesterol "liquid-ordered" phase indicates the occurrence of 1.2 gauche bonds/chain, a marked reduction from the 3.6-4.2 gauche bonds/chain for DPPC alone. Proximity to the ester moiety at acyl chain position 3 perturbs the vibrational coupling patterns of the CD2 rocking modes and eliminates their sensitivity to conformational change. In addition, the feasibility of a method based on the conformation-dependent coupling between CD2 rocking frequencies of two successive CD2 groups for the quantitative detection of specific, position-dependent king (gtg') and isolated gauche (gtt) conformers is demonstrated. Finally, comparisons between IR measurements and explicit theoretical predictions of acyl chain conformational order are presented.
Read full abstract