Two groups of invertebrates, terrestrial mollusks (Gastropoda) and Chrysomela populi leaf beetles (Coleoptera: Chrysomelidae), were sampled to estimate the suitability of these organisms as bioindicators of risk element pollution (predominantly Cd, Pb, and Zn) alongside the risk element concentration gradient in the contaminated area (former mining/smelting areas in the vicinity of Příbram city, Central Bohemia, Czech Republic). The individuals representing ten species of terrestrial snails and imagoes of C. populi were collected manually at five sampling sites, differing in the level of soil contamination with risk elements. The findings showed high variability of the results regardless of the element determined, animal species, and sampling location. Among the elements, higher accumulation ability was observed for Cd and Zn, given the higher bioaccessibility of these elements in soils compared to Pb, Cr, and Cu. Higher Cd and Zn accumulation in the soft tissues of gastropods (without any statistically significant differences among the species) compared to C. populi was also recorded. Medians of the bioaccumulation factors (BAFs) reached up to 33.2 for Cd and 5.8 for Zn, in gastropods while reaching up to 3.4 for Cd, and 2.3 for Zn, for C. populi. For both groups of organisms, paradoxically, a higher rate of accumulation of risk elements was observed in all analyzed organisms in sites with lower soil contamination compared to heavily contaminated sites. This indicated the ability of the organisms living in extreme conditions to avoid the uptake of these elements or to move among areas of different contamination levels. Thus, terrestrial gastropods and C. populi proved to be unsuitable bioindicators for assessing soil pollution.
Read full abstract