Biochar is an eco-friendly amendment for the remediation of soils contaminated with cadmium (Cd). However, little attention has been paid to the influence and underlying mechanisms of the co-pyrolyzed biochar on the bioavailability and uptake of Cd in paddy soils. The current study explored the effects of biochar co-pyrolyzed from peanut shells (P) and maize straw (M) at different mixing ratios (1:0, 1:1, 1:2, 1:3, 0:1, 2:1 and 3:1, w/w), on the bacterial community and Cd fractionation in paddy soil, and its uptake by rice plant. Biochar addition, particularly P1M3 (P/M 1:3), significantly elevated soil pH and cation exchange capacity, transferred the mobile Cd to the residual fraction, and reduced Cd availability in the rhizosphere soil. P1M3 application decreased the concentration of Cd in different rice tissues (root, stem, leaf, and grain) by 30.0%− 49.4%, compared to the control. Also, P1M3 enhanced the microbial diversity indices and relative abundance of iron-oxidizing bacteria in the rhizosphere soil. Moreover, P1M3 was more effective in promoting the formation of iron plaque, increasing the Cd sequestration by iron plaque than other treatments. Consequently, the highest yield and lowest Cd accumulation in rice were observed following P1M3 application. This study revealed the feasibility of applying P1M3 for facilitating paddy soils contaminated with Cd.
Read full abstract