Extensive research indicates that tumor stemness promotes tumor progression. Nonetheless, the underlying roles of stemness-related genes in renal clear cell carcinoma (ccRCC) are unclear. Data used in bioinformatics analysis were downloaded from The Cancer Genome Atlas (TCGA) database. Moreover, the R software, SPSS, and GraphPad Prism 8 were used for mapping and statistical analysis. First, the stemness index of each patient was quantified using a machine learning algorithm. Subsequently, the differentially expressed genes between high and low stemness index were identified as stemness-related genes. Based on these genes, a stable and effective prognostic model was identified to predict the overall survival of patients using a random forest algorithm (Training cohort; 1-year AUC: 0.67; 3-year AUC: 0.79; 5-year AUC: 0.73; Validation cohort; 1-year AUC: 0.66; 3-year AUC: 0.71; 5-year AUC: 0.7). The model genes comprised AC010973.2, RNU6-125P, AP001209.2, Z98885.1, KDM5C-IT1, and AL021368.3. Due to its highest importance evaluated by randomforst analysis, the AC010973.2 gene was selected for further research. In vitro experiments demonstrated that AC010973.2 is highly expressed in ccRCC tissue and cell lines. Meanwhile, its knockdown could significantly inhibit the proliferation of ccRCC cells based on colony formation and CCK8 assays. In summary, our findings reveal that the stemness-related gene AC01097.3 is closely associated with the survival of patients. Besides, it remarkably promotes cell proliferation in ccRCC, hence a novel potential therapeutic target.