The epigenetic modification of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) plays a crucial role in cccDNA transcription and viral persistence. Interferon-α (IFN-α) is a pivotal agent against HBV cccDNA. However, the mechanism by which IFN-α modulates the epigenetic regulation of cccDNA remains poorly understood. In this study, we report that IFN-α2b enhances the histone deacetylase 3 (HDAC3)-mediated de-2-hydroxyisobutyrylation of histone H4 lysine 8 (H4K8) on HBV cccDNA minichromosome to restrict the cccDNA transcription in liver. By screening acetyltransferases and deacetylases, we identified that HDAC3 was an effective restrictor of HBV transcription and replication. Moreover, we found that HDAC3 was able to mediate the de-2-hydroxyisobutyrylation of H4K8 in HBV-expressing hepatoma cells. Then, the 2-hydroxyisobutyrylation of histone H4K8 (H4K8hib) was identified on the HBV cccDNA minichromosome, promoting the HBV transcription and replication. The H4K8hib was regulated by HDAC3 depending on its deacetylase domain in the system. The low level of HDAC3 and high level of H4K8hib were observed in the liver tissues from HBV-infected human liver-chimeric mice. The levels of H4K8hib on HBV cccDNA minichromosome were significantly elevated in the liver biopsy specimens from clinical hepatitis B patients, which was consistent with the high transcriptional activity of cccDNA. Strikingly, IFN-α2b effectively facilitated the histone H4K8 de-2-hydroxyisobutyrylation mediated by HDAC3 on the HBV cccDNA minichromosome in primary human hepatocytes and hepatoma cells, leading to the inhibition of HBV transcription and replication. Our finding provides new insights into the mechanism by which IFN-α modulates the epigenetic regulation of HBV cccDNA minichromosome.
Read full abstract