BackgroundThe denomyotic junctional zone (JZ) plays an important role in the pathogenesis of adenomyosis. Proliferating cell nuclear antigen (PCNA) is an important nuclear marker of cell proliferation. This study aimed to evaluate the effects of the cannabinoid receptor CB1 on proliferation and apoptosis in the JZ in women with and without adenomyosis.MethodsJZ smooth muscle cells (JZSMCs) of the adenomyosis and control groups were collected and cultivated. Immunohistochemistry and immunoblotting were used for protein localization and expression detection of CB1 and PCNA. Additionally, qRT-PCR was used to quantitatively analyse the mRNA expression of the two. AM251 and ACEA were used to regulate the function of CB1 receptors, and CCK-8 assay and flow cytometry assay were used to verify the proliferation and apoptosis of JZSMCs after regulation.ResultsWe demonstrated that in normal JZSMCs CB1 and PCNA messenger RNA (mRNA) and protein expression was significantly higher in the proliferative phase of the menstrual cycle than in the secretory phase. CB1 and PCNA expression in JZSMCs from women with ADS was significantly higher than that in control women and did not significantly differ across the menstrual cycle. CB1 receptor antagonist AM251 inhibited the proliferation of adenomyotic JZSMCs in a dose-dependent manner. The CB1 receptor agonist ACEA significantly promoted the proliferation of adenomyotic JZSMCs. The apoptosis rate of adenomyotic JZSMCs treated with AM251 was significantly higher than that of JZSMCs from the untreated control group. The apoptosis rate was significantly decreased in the ACEA group compared with that in the untreated control group. Furthermore, AM251 suppressed the phosphorylation of AKT and Erk1/2 in adenomyotic JZSMCs. The CB1 agonist ACEA significantly promoted the phosphorylation of AKT and Erk1/2.ConclusionsOur results indicated that the levels of CB1 and PCNA were increased in patients with adenomyosis and that cyclic changes were lost. CB1 may affect uterine JZ proliferation and apoptosis in adenomyosis by enhancing AKT and MAPK/Erk signalling.
Read full abstract