Ultrasonic surgical aspirators typically operate at a frequency between 20 and 60 kHz. A vibrating hollow horn moves against the tissue and suction is applied. The interaction causes tissue to fragment; the fragmented material is then aspirated. However, the mechanism of interaction is poorly understood: the most common view relates it to cavitation, probably active in concert with other mechanisms, including the direct jack-hammer effect, shock-induced stress, acoustic microstreaming and shearing stress. It has also been attributed to chopping, which will produce emulsification. This article reports a study that collected and analyzed ultrasonic, high-speed photographic, visual/optical and electrical data for a 23-kHz unit operating in water and a range of fresh pig tissues. The primary mechanism for tissue fragmentation is shown to be horn-tip impact and other mechanical forces, operating in combination with hydrodynamic forces applied to the tissue on the forward stroke in each cycle. No evidence of cavitation in tissue was observed.