BackgroundStroke is a major cause of death and severe disability, and there remains a substantial need for the development of therapeutic agents for neuroprotection in acute ischemic stroke (IS) to protect the brain against damage before and during recanalization. Caveolin-1 (CAV1), an integrated protein that is located at the caveolar membrane, has been reported to exert neuroprotective effects during IS. Nevertheless, the mechanism remains largely unknown. Here, we explored the upstream modifiers of CAV1 in IS. MethodsE3 ubiquitin ligases of CAV1 that are differentially expressed in IS were screened using multiple databases. The transcription factor responsible for the dysregulation of E3 ubiquitin-protein ligase synoviolin (SYVN1) in IS was predicted and verified. Genetic manipulations by lentiviral vectors were applied to investigate the effects of double-strand-break repair protein rad21 homolog (RAD21), SYVN1, and CAV1 in a middle cerebral artery occlusion (MCAO) mouse model and mouse HT22 hippocampal neurons induced by oxygen-glucose deprivation (OGD). ResultsSYVN1 was highly expressed in mice with MCAO, and knockdown of SYVN1 alleviated IS injury in mice, as evidenced by limited infarction volume, the lower water content in the brain, and repressed apoptosis and inflammatory response. RAD21 inhibited the transcription of SYVN1, thereby reducing the ubiquitination modification of CAV1. Overexpression of RAD21 elicited a neuroprotective role as well in mice with MCAO and HT22 induced with OGD, which was overturned by SYVN1. ConclusionTranscriptional repression of SYVN1 by RAD21 alleviates IS in mice by reducing ubiquitination modification of CAV1.
Read full abstract