Abstract

There are abundant peroxiredoxin (Prx) enzymes, but an increase of cellular H2O2 level always happens inapoptotic cells. Here, we show that cellular H2O2 switches different apoptosis pathways depending on which type of Prx enzyme is absent. TNF-α-induced H2O2 burst preferentially activates the DNA damage-dependent apoptosis pathway in the absence of PrxI. By contrast, the same H2O2 burst stimulates the RIPK1-dependent apoptosis pathway in the absence of PrxII by inducing the destruction of cIAP1 in caveolar membrane. Specifically, H2O2 induces the oxidation of Cys308 residue in the cIAP1-BIR3 domain, which induces the dimerization-dependent E3 ligase activation. Thus, the reduction in cIAP level by the absence of PrxII triggers cell-autonomous apoptosis in cancer cells and tumors. Such differential functions of PrxI and PrxII are mediated by interaction with H2AX and cIAP1, respectively. Collectively, this study reveals the distinct switch roles of 2-Cys Prx isoforms in apoptosis signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.