Due to the significance of atmospheric HONO as a reservoir for radicals and the presence of substantial unknown sources of HONO, there is a pressing need for accurate and consistent measurement of its concentration. In this study, we compared the measurements obtained from the monitor for aerosols and gases in ambient air (MARGA) based on wet chemical method with those from the incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) based on optical method to assess the suitability of the MARGA instrument for accurate HONO detection. The diurnal patterns obtained by the two instruments are similar, with peaks at 8 a.m. and lows at 5 p.m. Over the course of the observation period, it was often observed that HONO concentrations recorded by the MARGA instrument consistently exceeded those obtained through the IBBCEAS technique, accounting for approximately 91.33% of the total observation time. Throughout the entire observation period, the R2 value between the two instruments was 0.49, indicating relatively good correlation. However, with a slope of only 0.27, it suggests poor agreement between the two instruments. Furthermore, the R2 and slopes between the two instruments vary with the seasons and day-night. The larger the quartile values of NO2, NH3, and BC, the greater the slopes of both MARGA and IBBCEAS instruments, and the higher the concentrations of NO2, NH3, and BC (indicator of semivolatile oxidizable hydrocarbons), the greater the differences between the two instruments, all indicating that NH3 may promote the reaction of NO2 with semivolatile oxidizable hydrocarbons to produce HONO. The O3 with its strong oxidizing properties may cause underestimation in the MARGA instrument by oxidizing NO2− to NO3− in the absorbing solution. It is challenging to derive a universal correction formula due to the interference of various chemical substances. Hence, MARGA should not be used for HONO research in the future.
Read full abstract