Abstract
The analysis of gases by THz radiation offers a high degree of discrimination due to the narrow linewidths that are observed at low pressure. The sensitivity of existing high-resolution instruments is limited by the availability and performance of critical system components. This study uses two key components with physical structures at the wavelength scale to realise a high finesse THz cavity. The cavity is characterised and incorporated into a spectrometer. Sensitivity limits of the instrument are experimentally demonstrated for trace and pure gases. Both CEAS (Cavity Enhanced Absorption Spectroscopy) and CRDS (Cavity Ring-Down Spectroscopy) configurations are shown to give sub-ppm detection levels. The cavity has also been used to measure the atmospheric losses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Photonics and Nanostructures - Fundamentals and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.