Sea-level rise has important implications for the economic and infrastructure security of coastal cities. Land subsidence further exacerbates relative sea-level rise. The Beijing–Tianjin–Hebei region (BTHR) along the Bohai Bay is one of the areas most severely affected by ground subsidence in the world. This study applies the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS InSAR) method to analyze 47 ALOS PALSAR-2 images with five frames, mapping subsidence across 21,677.7 km2 and revealing spatial patterns and trends over time from 2015 to 2021. This is one of the few published research studies for large-scale and long-term analysis of its kind using ALOS-2 data in this region. The results reveal the existence of six major areas affected by severe subsidence in the study area, with the most pronounced in Jinzhan Town, Beijing, with the maximum subsiding velocity of −94.42 mm/y. Except for the two subsidence areas located in Chaoyang District of Beijing and Guangyang District of Langfang City, the other areas with serious subsidence detected are all located in suburban areas; this means that the strict regulations of controlling urban subsidence for downtown areas in the BTHR have worked. The accumulated subsidence is highly correlated with the time in the time series. Moreover, the subsidence of 161.4 km of the Beijing–Tianjin Inter-City High-Speed Railway (HSR) and 194.5 km of the Beijing–Shanghai HSR (out of a total length of 1318 km) were analyzed. It is the first time that PALSAR-2 data have been used to simultaneously investigate the subsidence along two important HSR lines in China and to analyze relatively long sections of the routes. The above two railways intersect five and seven subsiding areas, respectively. Within the range of the monitored railway line, the percentage of the section with subsidence velocity below −10 mm/y in the monitoring length range is 11.2% and 27.9%; this indicates that the Beijing–Shanghai HSR has suffered more serious subsidence than the Beijing–Tianjin Inter-City HSR within the monitoring period. This research is also beneficial for assessing the subsidence risk associated with different railways. In addition, this study further analyzed the potential reasons for the serious land subsidence of the identified areas. The results of the geological interpretation still indicate that the main cause of subsidence in the area is due to hydrogeological characteristics and underground water withdrawal.
Read full abstract