Atypical hemolytic uremic syndrome (HUS) develops as a result of damage to the endothelium of microvasculature vessels by Shiga toxin produced by enterohemorrhagic Escherichia coli (STEC-HUS). STEC-HUS remains the leading cause of acute kidney injury (AKI) in children aged 6 months to 5 years. The pathomorphological essence of the disease is the development of thrombotic microangiopathy (TMA). One of the key causes of TMA is an imbalance in the ADAMTS13-von Willebrand factor (vWF)-platelet system. The goal of the work was to clarify the role of a moderate decrease in ADAMTS13 activity in the pathogenesis of STEC-HUS. The activity of ADAMTS13 was determined in 138 children (4 months-14.7 years) in the acute period of STEC-HUS and the features of the course of the disease in these patients were analyzed. The study revealed a decrease in the activity and concentration of ADAMTS13 in 79.8% and 90.6% of patients, respectively. Measurements of von Willebrand factor antigen content and the activity of von Willebrand factor in the blood plasma of part of these patients were carried out. In 48.6% and 34.4% of cases, there was an increase in the antigen concentration and the activity of the Willebrand factor, respectively. Thrombocytopenia was diagnosed in 97.8% of children. We have demonstrated that moderately reduced ADAMTS13 activity correlates with the risk of severe manifestations of STEC-HUS in children; the rate of developing multiple organ failure, cerebral disorders, pulmonary edema, and acute kidney injury with the need for dialysis increases. It is assumed that reduction in ADAMTS13 activity may serve as a predictor of disease severity.