Land use changes significantly impact anthropogenic phosphorus (P) emissions, their migration to a water environment, and the formation of freshwater eutrophication potential (FEP), yet the spatiotemporally heterogeneous relationships at the regional scale have been less explored. This study combines land use classification, P-flow modeling, spatial analysis, and cause-effect chain modeling to assess P emissions and P-induced FEP at a fine spatial resolution in Guangdong-Hong Kong-Macao Greater Bay Area and reveals their dynamic responses to land use changes. We find that land conversion from cultivated land to impervious land corresponded to an increase in P emissions of 4.1, 1.8, and 0.5 Gg during 2000-2005, 2005-2010, and 2010-2015 periods, respectively, revealing its dominant but weakening role in the intensification of P emissions especially in less-developed cities. Expansion of aquacultural land gradually became the primary contributor to the increase in both the amount and intensity of P emissions. Land conversions from cultivated land to impervious land and from natural water bodies to aquacultural land led to 35.9% and 25.3% of the increase in FEP, respectively. Our study identifies hotspots for mitigating the environmental pressure from P emissions and provides tailored land management strategies at specific regional development stages and within sensitive areas.