AbstractSmall amounts of 3H‐leucine were injected into discrete regions in the rostral medulla of the cat. Descending projections from these sites were studied with autoradiographic methods. On the basis of differential projections to the medulla and spinal cord, three distinct regions were delineated. Nucleus reticularis gigantocellularis (Rgc), located dorsally in the medullary reticular formation, projects primarily to “motor” related sites, including cranial motor nuclei VI, VII, XII, nucleus intercalatus, and a part of the ipsilateral medial accessory olive. The projection to the spinal cord is primarily via the ipsilateral ventrolateral and contralateral ventral funiculi. The Rgc terminal field is in lamina VII and VIII ipsilateral and lamina VIII contralateral to the injection site. In contrast, nucleus raphe magnus, (NRM) located ventrally, in the midline of the rostral medulla projects primarily to structures with known nociceptive and/or visceral afferent input. These sites include the solitary nucleus, the dorsal motor nucleus (X) and the marginal and gelatinous layers of the spinal trigeminal nucleus caudalis. The projection to the spinal cord is bilateral, via the dorsolateral funiculus. Terminal fields are found in the marginal zone and the substantia gelatinosa of the dorsal horn, and more deeply in lamina V, medial VI and VII. Nucleus reticularis magnocellularis (Rmc), located lateral to NRM and ventral to Rgc, has an overlapping projection with NRM, but the projection is ipsilateral. This difference between Rmc and Rgc is correlated with cytoarchitectural features of the two regions. The possibility that the raphe‐spinal pathway in the DLF mediates opiate and brain stimulation‐produced analgesia is discussed.
Read full abstract