The embedding theorems in weighted Besov-Lions type spaces <svg style="vertical-align:-4.30858pt;width:33.012501px;" id="M1" height="19.975" version="1.1" viewBox="0 0 33.012501 19.975" width="33.012501" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,19.975)"> <g transform="translate(72,-56.02)"> <text transform="matrix(1,0,0,-1,-71.95,60.37)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝐵</tspan> </text> <text transform="matrix(1,0,0,-1,-62.75,66.1)"> <tspan style="font-size: 8.75px; " x="0" y="0">𝑙</tspan> <tspan style="font-size: 8.75px; " x="2.7831359" y="0">,</tspan> <tspan style="font-size: 8.75px; " x="4.9711361" y="0">𝑠</tspan> <tspan style="font-size: 8.75px; " x="-0.5" y="8.3900003">𝑝</tspan> <tspan style="font-size: 8.75px; " x="3.7797279" y="8.3900003">,</tspan> <tspan style="font-size: 8.75px; " x="5.9677281" y="8.3900003">𝑞</tspan> <tspan style="font-size: 8.75px; " x="9.9761438" y="8.3900003">,</tspan> <tspan style="font-size: 8.75px; " x="12.164144" y="8.3900003">𝛾</tspan> </text> </g> </g> </svg> (<svg style="vertical-align:-3.25793pt;width:54.5625px;" id="M2" height="14.75" version="1.1" viewBox="0 0 54.5625 14.75" width="54.5625" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,14.75)"> <g transform="translate(72,-60.2)"> <text transform="matrix(1,0,0,-1,-71.95,63.5)"> <tspan style="font-size: 12.50px; " x="0" y="0">Ω</tspan> <tspan style="font-size: 12.50px; " x="9.3022318" y="0">;</tspan> <tspan style="font-size: 12.50px; " x="14.853564" y="0">𝐸</tspan> </text> <text transform="matrix(1,0,0,-1,-48.16,60.37)"> <tspan style="font-size: 8.75px; " x="0" y="0">0</tspan> </text> <text transform="matrix(1,0,0,-1,-43.29,63.5)"> <tspan style="font-size: 12.50px; " x="0" y="0">,</tspan> <tspan style="font-size: 12.50px; " x="5.2012482" y="0">𝐸</tspan> </text> </g> </g> </svg>) in which <svg style="vertical-align:-3.25793pt;width:35.987499px;" id="M3" height="14.3875" version="1.1" viewBox="0 0 35.987499 14.3875" width="35.987499" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,14.3875)"> <g transform="translate(72,-60.49)"> <text transform="matrix(1,0,0,-1,-71.95,63.79)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝐸</tspan> </text> <text transform="matrix(1,0,0,-1,-63.02,60.66)"> <tspan style="font-size: 8.75px; " x="0" y="0">0</tspan> </text> <text transform="matrix(1,0,0,-1,-58.15,63.79)"> <tspan style="font-size: 12.50px; " x="0" y="0">,</tspan> <tspan style="font-size: 12.50px; " x="5.2012482" y="0">𝐸</tspan> </text> </g> </g> </svg> are two Banach spaces and <svg style="vertical-align:-3.25793pt;width:48.862499px;" id="M4" height="14.3875" version="1.1" viewBox="0 0 48.862499 14.3875" width="48.862499" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,14.3875)"> <g transform="translate(72,-60.49)"> <text transform="matrix(1,0,0,-1,-71.95,63.79)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝐸</tspan> </text> <text transform="matrix(1,0,0,-1,-63.02,60.66)"> <tspan style="font-size: 8.75px; " x="0" y="0">0</tspan> </text> <text transform="matrix(1,0,0,-1,-54.68,63.79)"> <tspan style="font-size: 12.50px; " x="0" y="0">⊂</tspan> <tspan style="font-size: 12.50px; " x="12.040389" y="0">𝐸</tspan> </text> </g> </g> </svg> are studied. The most regular class of interpolation space <svg style="vertical-align:-3.22282pt;width:18.075001px;" id="M5" height="14.35" version="1.1" viewBox="0 0 18.075001 14.35" width="18.075001" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,14.35)"> <g transform="translate(72,-60.52)"> <text transform="matrix(1,0,0,-1,-71.95,63.79)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝐸</tspan> </text> <text transform="matrix(1,0,0,-1,-63.02,60.66)"> <tspan style="font-size: 8.75px; " x="0" y="0">𝛼</tspan> </text> </g> </g> </svg> between <svg style="vertical-align:-3.25793pt;width:17.375px;" id="M6" height="14.3875" version="1.1" viewBox="0 0 17.375 14.3875" width="17.375" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,14.3875)"> <g transform="translate(72,-60.49)"> <text transform="matrix(1,0,0,-1,-71.95,63.79)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝐸</tspan> </text> <text transform="matrix(1,0,0,-1,-63.02,60.66)"> <tspan style="font-size: 8.75px; " x="0" y="0">0</tspan> </text> </g> </g> </svg> and <i>E</i> is found such that the mixed differential operator <svg style="vertical-align:-0.0pt;width:19.5px;" id="M7" height="11.2" version="1.1" viewBox="0 0 19.5 11.2" width="19.5" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,11.2)"> <g transform="translate(72,-63.04)"> <text transform="matrix(1,0,0,-1,-71.95,63.09)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝐷</tspan> </text> <text transform="matrix(1,0,0,-1,-61.89,68.09)"> <tspan style="font-size: 8.75px; " x="0" y="0">𝛼</tspan> </text> </g> </g> </svg> is bounded from <svg style="vertical-align:-4.30858pt;width:33.012501px;" id="M8" height="19.975" version="1.1" viewBox="0 0 33.012501 19.975" width="33.012501" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,19.975)"> <g transform="translate(72,-56.02)"> <text transform="matrix(1,0,0,-1,-71.95,60.37)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝐵</tspan> </text> <text transform="matrix(1,0,0,-1,-62.75,66.1)"> <tspan style="font-size: 8.75px; " x="0" y="0">𝑙</tspan> <tspan style="font-size: 8.75px; " x="2.7831359" y="0">,</tspan> <tspan style="font-size: 8.75px; " x="4.9711361" y="0">𝑠</tspan> <tspan style="font-size: 8.75px; " x="-0.5" y="8.3900003">𝑝</tspan> <tspan style="font-size: 8.75px; " x="3.7797279" y="8.3900003">,</tspan> <tspan style="font-size: 8.75px; " x="5.9677281" y="8.3900003">𝑞</tspan> <tspan style="font-size: 8.75px; " x="9.9761438" y="8.3900003">,</tspan> <tspan style="font-size: 8.75px; " x="12.164144" y="8.3900003">𝛾</tspan> </text> </g> </g> </svg> (<svg style="vertical-align:-3.25793pt;width:54.5625px;" id="M9" height="14.75" version="1.1" viewBox="0 0 54.5625 14.75" width="54.5625" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,14.75)"> <g transform="translate(72,-60.2)"> <text transform="matrix(1,0,0,-1,-71.95,63.5)"> <tspan style="font-size: 12.50px; " x="0" y="0">Ω</tspan> <tspan style="font-size: 12.50px; " x="9.3022318" y="0">;</tspan> <tspan style="font-size: 12.50px; " x="14.853564" y="0">𝐸</tspan> </text> <text transform="matrix(1,0,0,-1,-48.16,60.37)"> <tspan style="font-size: 8.75px; " x="0" y="0">0</tspan> </text> <text transform="matrix(1,0,0,-1,-43.29,63.5)"> <tspan style="font-size: 12.50px; " x="0" y="0">,</tspan> <tspan style="font-size: 12.50px; " x="5.2012482" y="0">𝐸</tspan> </text> </g> </g> </svg>) to <svg style="vertical-align:-4.77652pt;width:33.012501px;" id="M10" height="17.15" version="1.1" viewBox="0 0 33.012501 17.15" width="33.012501" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,17.15)"> <g transform="translate(72,-58.28)"> <text transform="matrix(1,0,0,-1,-71.95,63.09)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝐵</tspan> </text> <text transform="matrix(1,0,0,-1,-62.75,68.09)"> <tspan style="font-size: 8.75px; " x="0" y="0">𝑠</tspan> <tspan style="font-size: 8.75px; " x="-0.5" y="8.1300001">𝑝</tspan> <tspan style="font-size: 8.75px; " x="3.7797279" y="8.1300001">,</tspan> <tspan style="font-size: 8.75px; " x="5.9677281" y="8.1300001">𝑞</tspan> <tspan style="font-size: 8.75px; " x="9.9761438" y="8.1300001">,</tspan> <tspan style="font-size: 8.75px; " x="12.164144" y="8.1300001">𝛾</tspan> </text> </g> </g> </svg> (<svg style="vertical-align:-3.22282pt;width:36.650002px;" id="M11" height="14.7125" version="1.1" viewBox="0 0 36.650002 14.7125" width="36.650002" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,14.7125)"> <g transform="translate(72,-60.23)"> <text transform="matrix(1,0,0,-1,-71.95,63.5)"> <tspan style="font-size: 12.50px; " x="0" y="0">Ω</tspan> <tspan style="font-size: 12.50px; " x="9.3022318" y="0">;</tspan> <tspan style="font-size: 12.50px; " x="14.853564" y="0">𝐸</tspan> </text> <text transform="matrix(1,0,0,-1,-48.16,60.37)"> <tspan style="font-size: 8.75px; " x="0" y="0">𝛼</tspan> </text> </g> </g> </svg>) and Ehrling-Nirenberg-Gagliardo type sharp estimates are established. By using these results, the uniform separability of degenerate abstract differential equations with parameters and the maximal <i >B</i>-regularity of Cauchy problem for abstract parabolic equations are obtained. The infinite systems of the degenerate partial differential equations and Cauchy problem for system of parabolic equations are further studied in applications.
Read full abstract