Dairy farming in northern Thailand is expanding, with dairy cattle populations increasing up to 8% per year. In addition, disease outbreaks frequently occur in this region, especially foot-and-mouth disease and bovine tuberculosis. Our goal was to quantify the underlying pattern of dairy cattle movements in the context of infectious disease surveillance and control as movements have been identified as risk factors for several infectious diseases. Movements at district levels within the northern region and between the northern and other regions from 2010 to 2017 were recorded by the Department of Livestock Development. Analyzed data included origin, destination, date and purpose of the movement, type of premise of origin and destination, and type and number of moved cattle. Social network analysis was performed to demonstrate patterns of dairy cattle movement within and between regions. The total numbers of movements and moved animals were 3,906 and 180,305, respectively. Decreasing trends in both the number of cattle moved and the number of movements were observed from 2010 to 2016, with increases in 2017. The majority (98%) of the animals moved were male dairy calves, followed by dairy cows (1.7%). The main purpose of the movements was for slaughter (96.3%). Most movements (67.4%) were shipments from central to northern regions, involving 87.1% of cattle moved. By contrast, 56% of the movements for growing and selling purposes occurred within the northern region, commonly involving dairy cows. Constructed movement networks showed heterogeneity of connections among districts. Of 110 districts, 28 were found to be influential to the movement networks, among which 11 districts showed high centrality measures in multiple networks stratified for movement purposes and regions, including eight districts in the northern and one district in each of the central, eastern, and lower northeastern regions of Thailand. These districts were more highly connected than others in the movement network, which may be important for disease transmission, surveillance, and control.
Read full abstract