Electrospray ionization (ESI) of tetrameric platinum(II) acetate, [Pt(4)(CH(3)COO)(8)], in methanol generates the formal platinum(III) dimeric cation [Pt(2)(CH(3)COO)(3)(CH(2)COO)(MeOH)(2)](+), which, upon harsher ionization conditions, sequentially loses the two methanol ligands, CO(2), and CH(2)COO to form the platinum(II) dimer [Pt(2)(CH(3)COO)(2)(CH(3))](+). Next, intramolecular sequential double hydrogen-atom transfer from the methyl group concomitant with the elimination of two acetic acid molecules produces Pt(2)CH(+) from which, upon even harsher conditions, PtCH(+) is eventually generated. This degradation sequence is supported by collision-induced dissociation (CID) experiments, extensive isotope-labeling studies, and DFT calculations. Both PtCH(+) and Pt(2)CH(+) react under thermal conditions with the hydrocarbons C(2)H(n) (n=2, 4, 6) and C(3)H(n) (n=6, 8). While, in ion-molecule reactions of PtCH(+) with C(2) hydrocarbons, the relative rates decrease with increasing n, the opposite trend holds true for Pt(2)CH(+). The Pt(2)CH(+) cluster only sluggishly reacts with C(2)H(2), but with C(2)H(4) and C(2)H(6) dihydrogen loss dominates. The reactions with the latter two substrates were preceded by a complete exchange of all of the hydrogen atoms present in the adduct complex. The PtCH(+) ion is much less selective. In the reactions with C(2)H(2) and C(2)H(4), elimination of H(2) occurs; however, CH(4) formation prevails in the decomposition of the adduct complex that is formed with C(2)H(6). In the reaction with C(2)H(2), in addition to H(2) loss, C(3)H(3)(+) is produced, and this process formally corresponds to the transfer of the cationic methylidyne unit CH(+) to C(2)H(2), accompanied by the release of neutral Pt. In the ion-molecule reactions with the C(3) hydrocarbons C(3)H(6) and C(3)H(8), dihydrogen loss occurs with high selectivity for Pt(2)CH(+), but in the reactions of these substrates with PtCH(+) several reaction routes compete. Finally, in the ion-molecule reactions with ammonia, both platinum complexes give rise to proton transfer to produce NH(4)(+); however, only the encounter complex generated with PtCH(+) undergoes efficient dehydrogenation of the substrate, and the rather minor formation of CNH(4)(+) indicates that C-N bond coupling is inefficient.
Read full abstract