Outer-sphere oxidation of phenols is under intense scrutiny because of questions related to the dynamics of proton-coupled electron transfer (PCET). Oxidation by cationic transition-metal complexes in aqueous solution presents special challenges because of the potential participation of the solvent as a proton acceptor and of the buffers as general base catalysts. Here we report that oxidation of phenol by a deficiency of [Os(phen)(3)](3+), as determined by stopped-flow spectrophotometry, yields a unique rate law that is second order in [osmium(III)] and [phenol] and inverse second order in [osmium(II)] and [H(+)]. A mechanism is inferred in which the phenoxyl radical is produced through a rapid PCET preequilibrium, followed by rate-limiting phenoxyl radical coupling. Marcus theory predicts that the rate of electron transfer from phenoxide to osmium(III) is fast enough to account for the rapid PCET preequilibrium, but it does not rule out the intervention of other pathways such as concerted proton-electron transfer or general base catalysis.