Weakly solvated, low charge density, alkali metal cations (K+ and Rb+) destabilize tryptophan zipper (trpzip) peptides with an effectiveness (for Rb+) similar to that of the protein denaturant urea. An analysis of alkali metal cation effects on polypeptides stabilized predominantly either by hydrogen bonds or by the classical hydrophobic effect indicates that the alkali metals attenuate stabilizing interactions involving the tryptophan indole groups. Destabilization does not result from electrolyte screening of the electrostatic component of the indole-indole interaction, but is likely to involve direct interaction of the low charge density cation with the indole group in a cation-pi interaction. The observations highlight a general simplicity in the nature of molecular interactions in solution, in which stabilizing contributions to polypeptide and protein structures are attenuated by solutes of a complementary nature.
Read full abstract