Via the adjunction -∗1⊣V(1,-):Span(V)→V-Mat\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ - *\\mathbbm {1} \\dashv \\mathcal V(\\mathbbm {1},-) :\ extsf {Span}({\\mathcal {V}}) \\rightarrow {\\mathcal {V}} \ ext {-} \ extsf {Mat} $$\\end{document} and a cartesian monad T on an extensive category V\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {\\mathcal {V}} $$\\end{document} with finite limits, we construct an adjunction -∗1⊣V(1,-):Cat(T,V)→(T¯,V)-Cat\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ - *\\mathbbm {1} \\dashv {\\mathcal {V}}(\\mathbbm {1},-) :\ extsf {Cat}(T,{\\mathcal {V}}) \\rightarrow ({\\overline{T}}, \\mathcal V)\ ext{- }\ extsf{Cat} $$\\end{document} between categories of generalized enriched multicategories and generalized internal multicategories, provided the monad T satisfies a suitable property, which holds for several examples. We verify, moreover, that the left adjoint is fully faithful, and preserves pullbacks, provided that the copower functor -∗1:Set→V\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ - *\\mathbbm {1} :\ extsf {Set} \\rightarrow {\\mathcal {V}} $$\\end{document} is fully faithful. We also apply this result to study descent theory of generalized enriched multicategorical structures. These results are built upon the study of base-change for generalized multicategories, which, in turn, was carried out in the context of categories of horizontal lax algebras arising out of a monad in a suitable 2-category of pseudodouble categories.