Synthetic fibers are widely used in daily life due to their durability, elasticity, low cost, and ease of use. The textile industry is the primary source of synthetic microfibers, as these materials are mostly used in production processes. Globally, plastic pollution has been identified as a major environmental threat in this era, since plastics are not degradable but break down into smaller particles such as mesoplastics, microplastics, and microfibers. Synthetic microfiber pollution is a significant issue in aquatic ecosystems, including oceans and rivers, with laundry wastewater being a major source. This problem is particularly pressing in cities like Galle, Sri Lanka, where numerous tourist hotels are located. Despite the urgency, there has been a lack of scientific and systematic analysis to fully understand the extent of the issue. This study addresses this gap by analyzing the generation of microfibers from laundry activities at a selected hotel and evaluating the efficiency of a laundry wastewater filtration system. This study focused on a fully automatic front-loading washing machine (23 kg capacity) with a load of 12 kg of polyester–cotton blend serviettes (black and red). Samples (1 L each) were taken from both treated and untreated wastewater during four wash cycles, with a total of 100 L of water used for the process. The samples were filtered through a 100 μm sieve and catalytic wet oxidation along with density separation were employed to extract the microfibers, which were then collected on a membrane filter paper (0.45 μm). Microfibers were observed and analyzed for shapes, colors and sizes under a stereo microscope. Results revealed that untreated laundry wastewater contained 10,028.7 ± 1420.8 microfibers per liter (n = 4), while treated wastewater samples recorded 191.5 ± 109.4 microfibers per liter (n = 4). Most of the microfibers observed were black and white/transparent colors. Further analysis revealed that 1 kg of polyester–cotton blend fabric can generate 336,833 microfibers per wash, which was reduced to 6367 microfibers after treatment. The filtration unit recorded an impressive efficiency of 98.09%, indicating a remarkably high capacity for removing microfibers from wastewater. These findings highlight the potential of such filtration techniques to significantly reduce microfiber emissions from laundry wastewater, presenting a promising approach to mitigating environmental pollution from microfibers.
Read full abstract