Abstract
As one of the few renewable aromatic resources, the research of depolymerization of lignin into high-value chemicals has attracted extensive attention in recent years. Catalytic wet aerobic oxidation (CWAO) is an effective technology to convert lignin like sodium lignosulfonate (SL), a lignin derivative, into aromatic aldehydes such as vanillin and syringaldehyde. However, how to improve the yield of aromatic aldehyde and conversion efficiency is still a challenge, and many operating conditions that significantly affect the yield of these aromatic compounds have rarely been investigated systematically. In this work, we adopted the stirred tank reactor (STR) for the CWAO process with nano-CuO as catalyst to achieve the conversion of SL into vanillin and syringaldehyde. The effect of operating conditions including reaction time, oxygen partial pressure, reaction temperature, SL concentration, rotational speed, catalyst amount, and NaOH concentration on the yield of single phenolic compound was systematically investigated. The results revealed that all these operating conditions exhibit a significant effect on the aromatic aldehyde yield. Therefore, they should be regulated in an optimal value to obtain high yield of these aldehydes. More importantly, the reaction kinetics of the lignin oxidation was explored. This work could provide basic data for the optimization and design of industrial operation of lignin oxidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.