Metal oxides like MnO2, Co3O4 and NiO were fabricated by controlling decomposition of metal salt precursor in the presence and absence of restrictive nanoreactor. The growth of oxide crystals was inhibited in restrictive space provided by hard template (nanocasting), which made the catalysts possess smaller crystal size, higher surface area and better low-temperature reducibility. Significantly, nanocasting-derived oxides (MnO2, Co3O4 and NiO) performed much better for catalytic total oxidation of benzene with T90% at 289, 253 and 355°C, which are 125, 41 and 61°C lower than that over the general oxides prepared by direct calcination.