2,5-Furandicarboxylic acid (FDCA) is a class of valuable biomass-based platform compounds. The creation of FDCA involves the catalytic oxidation of 5-hydroxymethylfurfural (HMF). As a novel catalytic method, electrocatalysis has been utilized in the 5-hydroxymethylfurfural oxidation reaction (HMFOR). Common noble metal catalysts show catalytic activity, which is limited by price and reaction conditions. Non-noble metal catalyst is known for its environmental friendliness, affordability and high efficiency. The development of energy efficient non-noble metal catalysts plays a crucial role in enhancing the HMFOR process. It can greatly upgrade the demand of industrial production, and has important research significance for electrocatalytic oxidation of HMF. In this paper, the reaction mechanism of HMF undergoes electrocatalytic oxidation to produce FDCA are elaborately summarized. There are two reaction pathways and two oxidation mechanisms of HMFOR discussed deeply. In addition, the speculation on the response of the electrode potential to HMFOR is presented in this paper. The main non-noble metal electrocatalysts currently used are classified and summarized by targeting metal element species. Finally, the paper focus on the mechanistic effects of non-noble metal catalysts in the reaction, and provide the present prospects and challenges in the electrocatalytic oxidation reaction of HMF.
Read full abstract