Abstract

The catalytic oxidation of alcohols is an important transformation in the chemical industry. Carbon materials with a large surface area and N doping show great promise as metal-free catalysts for the reaction. In this study, a rich N-containing covalent triazine framework polymerized by cyanuric chloride and p-phenylenediamine was used to synthesize N-doped porous carbon with the assistance of a pore-forming agent-NaCl. First, the mass ratio of the polymer/NaCl was optimized to 1:9. Then, the influence of the pyrolysis temperatures (700-1000 °C) on the materials was studied in detail. It was found that the carbon materials were gradually exfoliated by molten salt at high temperatures. XRD and Raman characterizations showed them with a certain graphitization. The optimal doped carbon CNN-1-9-900 achieved the highest surface area of 199.03 m2g-1 with the largest pore volume of 0.29 cm3g-1. Furthermore, it had a high N content of 9.9 at% with the highest relative proportion of pyridinic/graphitic N. Due to the synergistic effect between the surface area and pyridinic/graphitic N, CNN-1-9-900 showed the best performance for benzyl alcohol oxidation with TBHP at moderate conditions, and the process also worked for its derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.