Converting hydrocarbons and greenhouse gases (i.e., carbon dioxide, CO2) directly into electricity through fuel cells at intermediate temperatures (450 to 550 °C) remains a significant challenge, primarily due to the sluggish activation of C-H and C=O bonds. Here, we demonstrated a unique strategy to address this issue, in which light illumination was introduced into the thermal catalytic CO2 reforming of ethane in the anode as a unique thermo-photo anode process for carbonate-superstructured solid fuel cells. The light-enhanced fuel activation led to excellent cell performance with a record-high peak power density of 168 mW cm-2 at an intermediate temperature of 550 °C. Furthermore, no degradation was observed during ~50 h operation. Such a successful integration of photo energy into the fuel cell system provides a new direction for the development of efficient fuel cells.