The incorporation of non-metal dopants can significantly enhance catalytic activity and improve stability. Furthermore, the creation of heterostructures is particularly advantageous to facilitate charge transfer and optimize electronic properties. This study presents an effective bifunctional mixed-valence Ruthenium heterostructure synthesized through a cascading process involving grinding with carbon nitride and subsequent thermal treatment. The catalyst exhibits outstanding electrocatalytic performance with remarkably low overpotentials of 197 mV for the oxygen evolution reaction (OER) and 24.8 mV for the hydrogen evolution reaction (HER), respectively, with the stability exceeding 24 h at a current density of 10 mA cm⁻2 in acidic media. Additionally, when employed in an acidic oxygen water splitting (OWS) electrolyzer, the bifunctional catalyst demonstrates excellent activity, achieving an ultralow cell voltage of 1.53 V to sustain 10 mA cm⁻2. Enhanced performance is attributed to efficient charge transfer and increased exposure of active sites, providing valuable insights for the development of effective acidic water-electrolysis catalysts for sustainable hydrogen production.
Read full abstract