Mechanochemical synthesis based on ball-milling of individual oxides was applied as a one-step preparation technique for CuO-CeO2 catalyst for preferential CO oxidation in H2 excess. The mechanical energy dose transferred to the original powder mixture determines both the catalyst composition and activity. It is found that after 90 min of milling (corresponding to a dose of 372 kJ mol–1), a mixture of 10 wt.% CuO-CeO2 powder exhibits a CO conversion of 97% at 423 K. Four active oxygen states, which are not observed in case of pure CeO2, were detected in the nanocomposite lattice and attributed to the presence of Cu in surface sites as well as in subsurface bulk sites of CeO2, in nearest neighbor and next nearest neighbor positions. Correspondingly, oxidation of CO to CO2 was found to occur in a two-stage process with Tmax = 395/460 K, and oxidation of H2 to H2O likewise in a four-stage process with Tmax = 426/448/468/516 K. The milled powder consists of CeO2 crystallites sized 8–10 nm agglomerated to somewhat larger aggregates, with CuO dispersed on the surface of the CeO2 crystallites, and to a lesser extent present as Cu2O.
Read full abstract