Efficiently harnessing excess atmospheric carbon dioxide (CO2) is crucial for closing the carbon cycle effectively. Electrochemical CO2 reduction (ECR) holds significant promise for producing valuable products and environmentally friendly chemicals. Carbon monoxide (CO) stands out as one of the most economically viable products of ECR.[1,2] While noble metals commonly catalyze CO2-to-CO conversion, alternative non-noble catalysts are essential for cost reduction. Molecular catalysts like cobalt phthalocyanine (CoPc) offer high ECR activity but limited stability (< 10 h).[3–5] Moreover, the production cost of porous transport layers (PTLs) significantly impacts ECR electrolyzer costs, with commercial carbon-PTLs adding a 20% increase.[6–8] Our work focuses on developing low-cost, non-woven cellulose-based porous PTLs for electrochemical CO2-to-CO conversion. By depositing a cobalt phthalocyanine (CoPc) catalyst layer over our PTLs, we fabricated ECR-functioning gas-diffusion-electrodes (GDEs) for both flow-cell and zero-gap electrolyzers. Under optimal conditions, the Faradaic efficiency of CO (FECO) reached 92 % at a high current density of 200 mA cm−2. Furthering the architecture of the GDEs, CoPc was incorporated into the initial PTL slurry, forming ECR-active PTLs without the need for an additional catalyst layer. The new GDE architecture favored the CoPc-distribution by enhancing the contact and interactions with the carbon substrate and demonstrated a stable electrolysis process for over 50 h in a zero-gap electrolyzer at 200 mA cm−2 with a FECO of 80 %.[9] This study marks a substantial breakthrough in developing for the first time, paper-based functionalized PTLs for the ECR. Marking a significant contribution to the progression of the ECR into practical implications.[1] M. Jouny, W. Luc, F. Jiao, Ind. Eng. Chem. Res. 57 (2018) 2165–2177.[2] G.O. Larrazábal, A.J. Martín, J. Pérez-Ramírez, J. Phys. Chem. Lett. 8 (2017) 3933–3944.[3] S. Ren, D. Joulié, D. Salvatore, K. Torbensen, M. Wang, M. Robert, C.P. Berlinguette, Science 365 (2019) 367–369.[4] C. Costentin, S. Drouet, M. Robert, J.-M. Savéant, Science 338 (2012) 90–94.[5] M. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulié, F. Dumoulin, D. Mendoza, B. Lassalle-Kaiser, U. Işci, C.P. Berlinguette, M. Robert, Nat. Commun. 10 (2019) 3602.[6] A.J. Navarro, M.A. Gómez, L. Daza, J.J. López-Cascales, Sci. Rep. 12 (2022) 4219.[7] B. Yarar Kaplan, L. Işıkel Şanlı, S. Alkan Gürsel, J. Mater. Sci. 52 (2017) 4968–4976.[8] R.I. Masel, Z. Liu, H. Yang, J.J. Kaczur, D. Carrillo, S. Ren, D. Salvatore, C.P. Berlinguette, Nat. Nanotechnol. 16 (2021) 118–128.[9] I. Stamatelos, M. Rentzsch, C. Liu, F. Bauer, S. Barwe, M. Robert, ChemCatChem n/a (n.d.) e202300980. Figure 1
Read full abstract