In the present study, Moldflow® software is applied to simulate the injection molding of automobile instrument light guide bracket and optimize the injection gate position. In this regard, Taguchi orthogonal experimental design is adopted, and five processing parameters, the mold temperature, melt temperature, cooling time, packing pressure, and packing time, are considered as the test factors. Moreover, volume shrinkage and warping amount are considered as quality evaluation indices. Then range analysis and variance analysis are carried out to obtain the optimal combination of molding parameters with the volume shrinkage rate and the warpage amount. The grey correlation analysis was used to analyze the test results and obtain the optimal combination of volume shrinkage rate and amount of warping. Based on the performed simulations, it is found that the maximum volume shrinkage rate and the maximum amount of warping in the optimal design are 6.753% and 1.999 mm, respectively. According to the optimal process parameters, the injection molding of the automobile instrument light guide bracket meets the quality requirements.